PVP 19

ENGINEERING MATHEMATICS-III (PDE, COMPLEX VARIABLES &TRANSFORM TECHNIQUES)

Cou		19BS1301	Year	II	Semester	Ι			
Course Category		Basic Sciences course	Branch	ECE	Course Type	Theory			
Cred	lits	3	L-T-P	3-0-0	Prerequisites	Nil			
Inter	nuous mal ation:	30	Semester End Evaluation:	70	Total Marks:	100			
	Course Outcomes								
		essful completion of				function(a)			
CO1 CO2		nine Laplace transfor		1	Ũ				
CO2		Develop a Fourier series in terms of sine and cosine of a given function. Find out Fourier sine and cosine transforms.							
	Determine complex potential function, evaluate integrals by applying Cauchy's integral formula and construct series expansions of complex functions.								
CO5	Apply method of separation of variables to find the solution of wave, heat, Laplace equations with given boundary conditions.								

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

		-					
UNIT	Contents						
No.		COs					
	Laplace Transforms & Inverse Laplace Transforms 12 hrs						
	Definition of Laplace transform, properties of Laplace transforms, transforms of derivatives,						
Ι	transforms of integrals, multiplication by t^n , division by t , unit step function, unit impulse						
	function. Inverse Laplace transforms by partial fractions, convolution theorem (All						
	theorems/properties without proofs)						
	Fourier Series 7 hrs						
II	Fourier series, Dirichlet's conditions, functions of any period, odd and even functions - half	CO2					
	range series. (All theorems/properties without proofs)						
	Fourier Transforms 6 hrs						
III	Fourier integrals, Fourier cosine and sine integrals, Fourier transform, sine and cosine	CO3					
	transform. (All theorems/properties without proofs)						

IV	Complex Variables12 hrsDifferentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate. Cauchy theorem, Cauchy integral formula, Taylor's series, Laurent's series. (All theorems/properties without proofs)	CO4
V	Applications of Partial Differential Equations7 hrsClassification of second order partial differential equations, method of separation of variables, solutions of one dimensional wave equation, one dimensional heat equation and two dimensional Laplace's equation in cartesian coordinates.(All theorems/properties without proofs)	CO5

Learning Recourse(s)

Text Book(s)

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

Reference Book(s)

1. N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 2008.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/105/111105123/
- 2. https://www.nptel.ac.in/courses/111/105/111105134/
- 3. https://www.nptel.ac.in/courses/111/105/111105093/